If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10m^2+25m=0
a = 10; b = 25; c = 0;
Δ = b2-4ac
Δ = 252-4·10·0
Δ = 625
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{625}=25$$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(25)-25}{2*10}=\frac{-50}{20} =-2+1/2 $$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(25)+25}{2*10}=\frac{0}{20} =0 $
| 6x−8=40 | | 3+5x+57=180 | | 1/2x=-39 | | m+6/10=m+3/3 | | 5b=7b+4 | | 6x-12=4x+17 | | 24=h/3 | | -6x=x-6 | | 8x-6=2x+2 | | 40/42x=15/42 | | 3(5+6x)=45+8x | | 11-(x+5)=4x-4 | | 5x+8-8+16=29-x | | 23x+6=2 | | 2n16;n=9 | | 64=x-4 | | 5y=`12.5 | | x-8.50=12.50 | | 5r^2-9r-2=0 | | 6y-6y=14 | | 5x−12=−2+5(x−2) | | 1/3w=6/7 | | x/60=160/3200 | | 125/x=25 | | 1.6x2=3x | | 5(2x+4)=540 | | 2z+5=z^2-10 | | -t/4+3=t/8-1 | | F(x)=5000×1.05^x | | 50^2+x^2=60^2 | | 16t-7+4t=2t-1 | | 0.5+0.085c=3.56 |